A Momentary Flow

Updating Worldviews one World at a time

Tag Results

30 posts tagged data

Your Sushi May Be Getting Smarter - ‘Small data’ technology could finally replace food products’ expiration dates.  - Every year, some 48 million people in the United States get sick from something they ate. And thousands of them die from these foodborne illnesses, according to the Centers for Disease Control and Prevention. But the food that can make you sickest often doesn’t even look or smell tainted. Simply giving a food an expiration—or use-by—date doesn’t do much to protect people from bacteria like salmonella and e. Coli. After all, it’s not just time that spoils perishables; it’s also temperature. Americans end up throwing away tons of food—thousands of dollars’ worth per grocery store each day, according to one report—in an abundance of caution, and then many of them get sick anyway. One of the key factors contributing to this ongoing public-health problem is the question of which way the data is flowing. The systems we have in place now to track food safety are largely centralized: Huge agencies like the CDC and FDA collect information, track sickness as it’s reported, and disseminate crucial public-safety notices. But what if individual food items had smart labels that gave consumers the information—beyond simple expiration dates—to determine whether something is safe to eat from the moment they pick it up at the store? Thinfilm, for example, makes paper-thin electronic labels that are bendable and rewritable. Its CEO, Davor Sutija, says there’s value in offering more item-by-item information without relying on centralized infrastructure to make sense of it. (via Your Sushi May Be Getting Smarter - The Atlantic)

Your Sushi May Be Getting Smarter
-
‘Small data’ technology could finally replace food products’ expiration dates.
-
Every year, some 48 million people in the United States get sick from something they ate. And thousands of them die from these foodborne illnesses, according to the Centers for Disease Control and Prevention. But the food that can make you sickest often doesn’t even look or smell tainted. Simply giving a food an expiration—or use-by—date doesn’t do much to protect people from bacteria like salmonella and e. Coli. After all, it’s not just time that spoils perishables; it’s also temperature. Americans end up throwing away tons of food—thousands of dollars’ worth per grocery store each day, according to one report—in an abundance of caution, and then many of them get sick anyway. One of the key factors contributing to this ongoing public-health problem is the question of which way the data is flowing. The systems we have in place now to track food safety are largely centralized: Huge agencies like the CDC and FDA collect information, track sickness as it’s reported, and disseminate crucial public-safety notices. But what if individual food items had smart labels that gave consumers the information—beyond simple expiration dates—to determine whether something is safe to eat from the moment they pick it up at the store? Thinfilm, for example, makes paper-thin electronic labels that are bendable and rewritable. Its CEO, Davor Sutija, says there’s value in offering more item-by-item information without relying on centralized infrastructure to make sense of it. (via Your Sushi May Be Getting Smarter - The Atlantic)

"The main application of quantum teleportation is a quantum version of the internet, extending a global network that we can use to send quantum information," said Professor Hanson. "What you’re doing is using entanglement as your communication channel. The information is teleported to the other side, and there’s no way anyone can intercept that information." Einstein himself doubted the existence of quantum entanglement, a phenomenon in which particles located as far away as opposite sides of the universe remain inextricably linked. Whatever happens to one particle instantaneously happens to the other like a quantum-powered Voodoo doll.

Scientists achieve quantum teleportation breakthrough that could prove Einstein wrong - Science - News - The Independent
Come on Feel the Data (And Smell It)Digital interaction will engage all of our senses simultaneously, including smell and taste, to help us feel the impact of information in our guts  - The Internet of Things promises to bring network connectivity and ubiquitous digital sensors in a wide variety of everyday materials and devices. This plethora of inputs produces data, and lots of it. We already stretched to the limit processing, internalizing, and understanding the data we have today. In the future, the sophisticated data visualizations—graphs, flowcharts, and infographics—that are staples of contemporary digital media products will become increasingly insufficient. Instead, the burgeoning Internet of Things will rely increasingly on what I call “data visceralizations.” Data visceralizations are representations of information that don’t rely solely and primarily on sight or sound, but on multiple senses including touch, smell, and even taste, working together to stimulate our feelings as well as our thoughts. (via Come on Feel the Data (And Smell It) - Luke Stark - The Atlantic)

Come on Feel the Data (And Smell It)
Digital interaction will engage all of our senses simultaneously, including smell and taste, to help us feel the impact of information in our guts
-
The Internet of Things promises to bring network connectivity and ubiquitous digital sensors in a wide variety of everyday materials and devices. This plethora of inputs produces data, and lots of it. We already stretched to the limit processing, internalizing, and understanding the data we have today. In the future, the sophisticated data visualizations—graphs, flowcharts, and infographics—that are staples of contemporary digital media products will become increasingly insufficient. Instead, the burgeoning Internet of Things will rely increasingly on what I call “data visceralizations.” Data visceralizations are representations of information that don’t rely solely and primarily on sight or sound, but on multiple senses including touch, smell, and even taste, working together to stimulate our feelings as well as our thoughts. (via Come on Feel the Data (And Smell It) - Luke Stark - The Atlantic)

What Does Big Data Look Like? Visualization Is Key for Humans
A simple Google image search on “big data” reveals numerous instances of three dimensional one’s and zero’s, a few explanatory infographics, and even the interface from The Matrix. So what does “big data” look like, within human comprehension? Ask a CEO of a major company what “big data” is, and they’ll likely describe something akin to a blackbox, the flight recorders on airplanes, or draw a cloud on a whiteboard. Ask a data scientist and you might get an explanation of the 4 V’s, itself an attempt at an infographic (but really just a visual collection of facts) and a corresponding explanation. The reason for this is that “big data” is a nebulous term with different meanings, representations, and uses for different organizations. Understandably, it’s hard to fathom where to start when there’s so darn much of it. From the beginning of recorded time until 2003, humans had created 5 exabytes (5 billion gigabytes) of data. In 2011, the same amount was created every two days. It’s true that we’ve made leaps and bounds with showing earlier generations of data. However, when it comes to today’s big data, how it looks can help convey information but it needs to be more than just beautiful and superficial. It has to work, show multiple dimensions, and be useful. New software and technologies have enabled us to gain higher level access to understanding these enormous sets of data. However, the only way we’re going to truly gather and juice all the information big data is worth is to apply a level of relatively unprecedented data visualization. How do we get to actionable analysis, deeper insight, and visually comprehensive representations of the information? The answer: we need to make data more human. (via What Does Big Data Look Like? Visualization Is Key for Humans | Innovation Insights | Wired.com)

What Does Big Data Look Like? Visualization Is Key for Humans

A simple Google image search on “big data” reveals numerous instances of three dimensional one’s and zero’s, a few explanatory infographics, and even the interface from The Matrix. So what does “big data” look like, within human comprehension? Ask a CEO of a major company what “big data” is, and they’ll likely describe something akin to a blackbox, the flight recorders on airplanes, or draw a cloud on a whiteboard. Ask a data scientist and you might get an explanation of the 4 V’s, itself an attempt at an infographic (but really just a visual collection of facts) and a corresponding explanation. The reason for this is that “big data” is a nebulous term with different meanings, representations, and uses for different organizations. Understandably, it’s hard to fathom where to start when there’s so darn much of it. From the beginning of recorded time until 2003, humans had created 5 exabytes (5 billion gigabytes) of data. In 2011, the same amount was created every two days. It’s true that we’ve made leaps and bounds with showing earlier generations of data. However, when it comes to today’s big data, how it looks can help convey information but it needs to be more than just beautiful and superficial. It has to work, show multiple dimensions, and be useful. New software and technologies have enabled us to gain higher level access to understanding these enormous sets of data. However, the only way we’re going to truly gather and juice all the information big data is worth is to apply a level of relatively unprecedented data visualization. How do we get to actionable analysis, deeper insight, and visually comprehensive representations of the information? The answer: we need to make data more human. (via What Does Big Data Look Like? Visualization Is Key for Humans | Innovation Insights | Wired.com)

Source Wired

thenewenlightenmentage:

Biology’s Big Problem: There’s Too Much Data to Handle
Twenty years ago, sequencing the human genome was one of the most ambitious science projects ever attempted. Today, compared to the collection of genomes of the microorganisms living in our bodies, the ocean, the soil and elsewhere, each human genome, which easily fits on a DVD, is comparatively simple. Its 3 billion DNA base pairs and about 20,000 genes seem paltry next to the roughly 100 billion bases and millions of genes that make up the microbes found in the human body.
And a host of other variables accompanies that microbial DNA, including the age and health status of the microbial host, when and where the sample was collected, and how it was collected and processed. Take the mouth, populated by hundreds of species of microbes, with as many as tens of thousands of organisms living on each tooth. Beyond the challenges of analyzing all of these, scientists need to figure out how to reliably and reproducibly characterize the environment where they collect the data.
Continue Reading

thenewenlightenmentage:

Biology’s Big Problem: There’s Too Much Data to Handle

Twenty years ago, sequencing the human genome was one of the most ambitious science projects ever attempted. Today, compared to the collection of genomes of the microorganisms living in our bodies, the ocean, the soil and elsewhere, each human genome, which easily fits on a DVD, is comparatively simple. Its 3 billion DNA base pairs and about 20,000 genes seem paltry next to the roughly 100 billion bases and millions of genes that make up the microbes found in the human body.

And a host of other variables accompanies that microbial DNA, including the age and health status of the microbial host, when and where the sample was collected, and how it was collected and processed. Take the mouth, populated by hundreds of species of microbes, with as many as tens of thousands of organisms living on each tooth. Beyond the challenges of analyzing all of these, scientists need to figure out how to reliably and reproducibly characterize the environment where they collect the data.

Continue Reading

(via megacosms)

Source Wired

Reblogged from The New Enlightenment Age

Five Dimensions Store More Data Than Three
An experimental computer memory format uses five dimensions to store data with a density that would allow more than 300 terabytes to be crammed onto a standard optical disc. But unlike an optical disc, which is made of plastic, the experimental media is quartz glass. Researchers have long been trying to use glass as a storage material because it is far more durable than existing plastics. A team led by optoelectronics researcher Jingyu Zhang at the University of Southampton, in the U.K., has demonstrated that information can be stored in glass by changing its birefringence, a property related to how polarized light moves through the glass (PDF). In conventional optical media, such as DVDs, you store data by burning tiny pits on one or more layers on the plastic disc, which means you’re using three spatial dimensions to store information. But in Zhang’s experiment, he and colleagues exploit two additional, optical dimensions. (via Five Dimensions Store More Data Than Three - IEEE Spectrum)

Five Dimensions Store More Data Than Three

An experimental computer memory format uses five dimensions to store data with a density that would allow more than 300 terabytes to be crammed onto a standard optical disc. But unlike an optical disc, which is made of plastic, the experimental media is quartz glass. Researchers have long been trying to use glass as a storage material because it is far more durable than existing plastics. A team led by optoelectronics researcher Jingyu Zhang at the University of Southampton, in the U.K., has demonstrated that information can be stored in glass by changing its birefringence, a property related to how polarized light moves through the glass (PDF). In conventional optical media, such as DVDs, you store data by burning tiny pits on one or more layers on the plastic disc, which means you’re using three spatial dimensions to store information. But in Zhang’s experiment, he and colleagues exploit two additional, optical dimensions. (via Five Dimensions Store More Data Than Three - IEEE Spectrum)

A molecular database for developing organic solar cells
Harvard researchers have released a massive database of more than 2 million molecules that might be useful in the construction of solar cells that rely on organic compounds for construction of organic solar cells for the production of renewable energy.
Developed as part of the Materials Genome Initiative launched by the White House’s Office of Science and Technology Policy (OSTP) the goal of the database is to provide researchers with a starting point for research aimed at increasing the efficiency of this cheap, easy-to-produce solar energy technology.
“One of the problems with organic solar cells is, right now, there are only a handful of molecules that are in the same league with silicon in terms of efficiency,” Harvard Professor of Chemistry and Chemical Biology Alán Aspuru-Guzik said. “This is really a guide for experimentalists. What we’re doing is democratizing access to this type of data in the same way that the biologists did with the Human Genome Project.”
“In many ways, biology is far ahead of chemistry in these efforts,” he added. “You can find the genome of a frog online, or the genome of a worm, but you cannot do that for the quantum properties of molecular materials. This database will provide access to the ‘secret sauce’ of these materials, so people can explore innovative new ideas.”
The data was generated by the Harvard Clean Energy Project in partnership with IBM and the group of Prof. Zhenan Bao at Stanford University. It uses supercomputing power provided by a network of thousands of volunteer donors around the world. (via A molecular database for developing organic solar cells | KurzweilAI)

A molecular database for developing organic solar cells

Harvard researchers have released a massive database of more than 2 million molecules that might be useful in the construction of solar cells that rely on organic compounds for construction of organic solar cells for the production of renewable energy.

Developed as part of the Materials Genome Initiative launched by the White House’s Office of Science and Technology Policy (OSTP) the goal of the database is to provide researchers with a starting point for research aimed at increasing the efficiency of this cheap, easy-to-produce solar energy technology.

“One of the problems with organic solar cells is, right now, there are only a handful of molecules that are in the same league with silicon in terms of efficiency,” Harvard Professor of Chemistry and Chemical Biology Alán Aspuru-Guzik said. “This is really a guide for experimentalists. What we’re doing is democratizing access to this type of data in the same way that the biologists did with the Human Genome Project.”

“In many ways, biology is far ahead of chemistry in these efforts,” he added. “You can find the genome of a frog online, or the genome of a worm, but you cannot do that for the quantum properties of molecular materials. This database will provide access to the ‘secret sauce’ of these materials, so people can explore innovative new ideas.”

The data was generated by the Harvard Clean Energy Project in partnership with IBM and the group of Prof. Zhenan Bao at Stanford University. It uses supercomputing power provided by a network of thousands of volunteer donors around the world. (via A molecular database for developing organic solar cells | KurzweilAI)