A Momentary Flow

Updating Worldviews one World at a time

Neuroscientists identify key role of language gene
-
Neuroscientists have found that a gene mutation that arose more than half a million years ago may be key to humans’ unique ability to produce and understand speech. Researchers from MIT and several European universities have shown that the human version of a gene called Foxp2 makes it easier to transform new experiences into routine procedures. When they engineered mice to express humanized Foxp2, the mice learned to run a maze much more quickly than normal mice. The findings suggest that Foxp2 may help humans with a key component of learning language — transforming experiences, such as hearing the word “glass” when we are shown a glass of water, into a nearly automatic association of that word with objects that look and function like glasses, says Ann Graybiel, an MIT Institute Professor, member of MIT’s McGovern Institute for Brain Research, and a senior author of the study. “This really is an important brick in the wall saying that the form of the gene that allowed us to speak may have something to do with a special kind of learning, which takes us from having to make conscious associations in order to act to a nearly automatic-pilot way of acting based on the cues around us,” Graybiel says. Wolfgang Enard, a professor of anthropology and human genetics at Ludwig-Maximilians University in Germany, is also a senior author of the study, which appears in the Proceedings of the National Academy of Sciences this week. The paper’s lead authors are Christiane Schreiweis, a former visiting graduate student at MIT, and Ulrich Bornschein of the Max Planck Institute for Evolutionary Anthropology in Germany. All animal species communicate with each other, but humans have a unique ability to generate and comprehend language. Foxp2 is one of several genes that scientists believe may have contributed to the development of these linguistic skills. The gene was first identified in a group of family members who had severe difficulties in speaking and understanding speech, and who were found to carry a mutated version of the Foxp2 gene. In 2009, Svante Pääbo, director of the Max Planck Institute for Evolutionary Anthropology, and his team engineered mice to express the human form of the Foxp2 gene, which encodes a protein that differs from the mouse version by only two amino acids. His team found that these mice had longer dendrites — the slender extensions that neurons use to communicate with each other — in the striatum, a part of the brain implicated in habit formation. They were also better at forming new synapses, or connections between neurons. (via Neuroscientists identify key role of language gene — ScienceDaily)

Neuroscientists identify key role of language gene
-
Neuroscientists have found that a gene mutation that arose more than half a million years ago may be key to humans’ unique ability to produce and understand speech. Researchers from MIT and several European universities have shown that the human version of a gene called Foxp2 makes it easier to transform new experiences into routine procedures. When they engineered mice to express humanized Foxp2, the mice learned to run a maze much more quickly than normal mice. The findings suggest that Foxp2 may help humans with a key component of learning language — transforming experiences, such as hearing the word “glass” when we are shown a glass of water, into a nearly automatic association of that word with objects that look and function like glasses, says Ann Graybiel, an MIT Institute Professor, member of MIT’s McGovern Institute for Brain Research, and a senior author of the study. “This really is an important brick in the wall saying that the form of the gene that allowed us to speak may have something to do with a special kind of learning, which takes us from having to make conscious associations in order to act to a nearly automatic-pilot way of acting based on the cues around us,” Graybiel says. Wolfgang Enard, a professor of anthropology and human genetics at Ludwig-Maximilians University in Germany, is also a senior author of the study, which appears in the Proceedings of the National Academy of Sciences this week. The paper’s lead authors are Christiane Schreiweis, a former visiting graduate student at MIT, and Ulrich Bornschein of the Max Planck Institute for Evolutionary Anthropology in Germany. All animal species communicate with each other, but humans have a unique ability to generate and comprehend language. Foxp2 is one of several genes that scientists believe may have contributed to the development of these linguistic skills. The gene was first identified in a group of family members who had severe difficulties in speaking and understanding speech, and who were found to carry a mutated version of the Foxp2 gene. In 2009, Svante Pääbo, director of the Max Planck Institute for Evolutionary Anthropology, and his team engineered mice to express the human form of the Foxp2 gene, which encodes a protein that differs from the mouse version by only two amino acids. His team found that these mice had longer dendrites — the slender extensions that neurons use to communicate with each other — in the striatum, a part of the brain implicated in habit formation. They were also better at forming new synapses, or connections between neurons. (via Neuroscientists identify key role of language gene — ScienceDaily)

Woman of 24 found to have no cerebellum in her brain
-
DON’T mind the gap. A woman has reached the age of 24 without anyone realising she was missing a large part of her brain. The case highlights just how adaptable the organ is. The discovery was made when the woman was admitted to the Chinese PLA General Hospital of Jinan Military Area Command in Shandong Province complaining of dizziness and nausea. She told doctors she’d had problems walking steadily for most of her life, and her mother reported that she hadn’t walked until she was 7 and that her speech only became intelligible at the age of 6. Doctors did a CAT scan and immediately identified the source of the problem – her entire cerebellum was missing (see scan, below left). The space where it should be was empty of tissue. Instead it was filled with cerebrospinal fluid, which cushions the brain and provides defence against disease. The cerebellum – sometimes known as the “little brain” – is located underneath the two hemispheres. It looks different from the rest of the brain because it consists of much smaller and more compact folds of tissue. It represents about 10 per cent of the brain’s total volume but contains 50 per cent of its neurons. Although it is not unheard of to have part of your brain missing, either congenitally or from surgery, the woman joins an elite club of just nine people who are known to have lived without their entire cerebellum. A detailed description of how the disorder affects a living adult is almost non-existent, say doctors from the Chinese hospital, because most people with the condition die at a young age and the problem is only discovered on autopsy (Brain, doi.org/vh7). (via Woman of 24 found to have no cerebellum in her brain - health - 10 September 2014 - New Scientist)

Woman of 24 found to have no cerebellum in her brain
-
DON’T mind the gap. A woman has reached the age of 24 without anyone realising she was missing a large part of her brain. The case highlights just how adaptable the organ is. The discovery was made when the woman was admitted to the Chinese PLA General Hospital of Jinan Military Area Command in Shandong Province complaining of dizziness and nausea. She told doctors she’d had problems walking steadily for most of her life, and her mother reported that she hadn’t walked until she was 7 and that her speech only became intelligible at the age of 6. Doctors did a CAT scan and immediately identified the source of the problem – her entire cerebellum was missing (see scan, below left). The space where it should be was empty of tissue. Instead it was filled with cerebrospinal fluid, which cushions the brain and provides defence against disease. The cerebellum – sometimes known as the “little brain” – is located underneath the two hemispheres. It looks different from the rest of the brain because it consists of much smaller and more compact folds of tissue. It represents about 10 per cent of the brain’s total volume but contains 50 per cent of its neurons. Although it is not unheard of to have part of your brain missing, either congenitally or from surgery, the woman joins an elite club of just nine people who are known to have lived without their entire cerebellum. A detailed description of how the disorder affects a living adult is almost non-existent, say doctors from the Chinese hospital, because most people with the condition die at a young age and the problem is only discovered on autopsy (Brain, doi.org/vh7). (via Woman of 24 found to have no cerebellum in her brain - health - 10 September 2014 - New Scientist)

Following fast on the heels of the Baumeister paper, the psychologists Paul Rozin and Edward Royzman of the University of Pennsylvania invoked the term ‘negativity bias’ to reflect their finding that negative events are especially contagious. The Penn researchers give the example of brief contact with a cockroach, which ‘will usually render a delicious meal inedible’, as they say in a 2001 paper. ‘The inverse phenomenon – rendering a pile of cockroaches on a platter edible by contact with one’s favourite food – is unheard of. More modestly, consider a dish of a food that you are inclined to dislike: lima beans, fish, or whatever. What could you touch to that food to make it desirable to eat – that is, what is the anti-cockroach? Nothing!’ When it comes to something negative, minimal contact is all that’s required to pass on the essence, they argue.

Praise feels good, but negativity is stronger – Jacob Burak – Aeon
read of the day: Outlook: gloomy
-
Humans are wired for bad news, angry faces and sad memories. Is this negativity bias useful or something to overcome?
-
I have good news and bad news. Which would you like first? If it’s bad news, you’re in good company – that’s what most people pick. But why? Negative events affect us more than positive ones. We remember them more vividly and they play a larger role in shaping our lives. Farewells, accidents, bad parenting, financial losses and even a random snide comment take up most of our psychic space, leaving little room for compliments or pleasant experiences to help us along life’s challenging path. The staggering human ability to adapt ensures that joy over a salary hike will abate within months, leaving only a benchmark for future raises. We feel pain, but not the absence of it. Hundreds of scientific studies from around the world confirm our negativity bias: while a good day has no lasting effect on the following day, a bad day carries over. We process negative data faster and more thoroughly than positive data, and they affect us longer. Socially, we invest more in avoiding a bad reputation than in building a good one. Emotionally, we go to greater lengths to avoid a bad mood than to experience a good one. Pessimists tend to assess their health more accurately than optimists. In our era of political correctness, negative remarks stand out and seem more authentic. People – even babies as young as six months old – are quick to spot an angry face in a crowd, but slower to pick out a happy one; in fact, no matter how many smiles we see in that crowd, we will always spot the angry face first. 

go read it..

(via Praise feels good, but negativity is stronger – Jacob Burak – Aeon)

read of the day: Outlook: gloomy
-
Humans are wired for bad news, angry faces and sad memories. Is this negativity bias useful or something to overcome?
-
I have good news and bad news. Which would you like first? If it’s bad news, you’re in good company – that’s what most people pick. But why? Negative events affect us more than positive ones. We remember them more vividly and they play a larger role in shaping our lives. Farewells, accidents, bad parenting, financial losses and even a random snide comment take up most of our psychic space, leaving little room for compliments or pleasant experiences to help us along life’s challenging path. The staggering human ability to adapt ensures that joy over a salary hike will abate within months, leaving only a benchmark for future raises. We feel pain, but not the absence of it. Hundreds of scientific studies from around the world confirm our negativity bias: while a good day has no lasting effect on the following day, a bad day carries over. We process negative data faster and more thoroughly than positive data, and they affect us longer. Socially, we invest more in avoiding a bad reputation than in building a good one. Emotionally, we go to greater lengths to avoid a bad mood than to experience a good one. Pessimists tend to assess their health more accurately than optimists. In our era of political correctness, negative remarks stand out and seem more authentic. People – even babies as young as six months old – are quick to spot an angry face in a crowd, but slower to pick out a happy one; in fact, no matter how many smiles we see in that crowd, we will always spot the angry face first.

go read it..

(via Praise feels good, but negativity is stronger – Jacob Burak – Aeon)

Take “kick the bucket.” Lakoff offers a theory of what it means using a scene from Young Frankenstein. “Mel Brooks is there and they’ve got the patient dying,” he says. “The bucket is a slop bucket at the edge of the bed, and as he dies, his foot goes out in rigor mortis and the slop bucket goes over and they all hold their nose. OK. But what’s interesting about this is that the bucket starts upright and it goes down. It winds up empty. This is a metaphor—that you’re full of life, and life is a fluid. You kick the bucket, and it goes over.”

Your Brain on Metaphors - The Chronicle Review - The Chronicle of Higher Education
Neurons reveal the brain’s learning limit - Carnegie Mellon University, Stanford University, University of Pittsburgh Original Study - Scientists have discovered a fundamental constraint in the brain that may explain why it’s easier to learn a skill that’s related to an ability you already have. For example, a trained pianist can learn a new melody easier than learning how to hit a tennis serve. As reported in Nature, the researchers found for the first time that there are limitations on how adaptable the brain is during learning and that these restrictions are a key determinant for whether a new skill will be easy or difficult to learn. Understanding how the brain’s activity can be “flexed” during learning could eventually be used to develop better treatments for stroke and other brain injuries. Lead author Patrick T. Sadtler, a Ph.D. candidate in the University of Pittsburgh department of bioengineering, compared the study’s findings to cooking. “Suppose you have flour, sugar, baking soda, eggs, salt, and milk. You can combine them to make different items—bread, pancakes, and cookies—but it would be difficult to make hamburger patties with the existing ingredients,” Sadtler says. “We found that the brain works in a similar way during learning. We found that subjects were able to more readily recombine familiar activity patterns in new ways relative to creating entirely novel patterns.” (via Neurons reveal the brain’s learning limit - Futurity)

Neurons reveal the brain’s learning limit
-
Carnegie Mellon University, Stanford University, University of Pittsburgh Original Study
-
Scientists have discovered a fundamental constraint in the brain that may explain why it’s easier to learn a skill that’s related to an ability you already have. For example, a trained pianist can learn a new melody easier than learning how to hit a tennis serve. As reported in Nature, the researchers found for the first time that there are limitations on how adaptable the brain is during learning and that these restrictions are a key determinant for whether a new skill will be easy or difficult to learn. Understanding how the brain’s activity can be “flexed” during learning could eventually be used to develop better treatments for stroke and other brain injuries. Lead author Patrick T. Sadtler, a Ph.D. candidate in the University of Pittsburgh department of bioengineering, compared the study’s findings to cooking. “Suppose you have flour, sugar, baking soda, eggs, salt, and milk. You can combine them to make different items—bread, pancakes, and cookies—but it would be difficult to make hamburger patties with the existing ingredients,” Sadtler says. “We found that the brain works in a similar way during learning. We found that subjects were able to more readily recombine familiar activity patterns in new ways relative to creating entirely novel patterns.” (via Neurons reveal the brain’s learning limit - Futurity)

Mouse memories ‘flipped’ from fearful to cheerful
-
By artificially activating circuits in the brain, scientists have turned negative memories into positive ones. They gave mice bad memories of a place, then made them good - or vice versa - without ever returning to that place. Neurons storing the “place” memory were re-activated in a different emotional context, modifying the association. Although unlikely to be applied in humans with traumatic memories, the work sheds new light on the details of how emotional memories form and change. The research is is published in the journal Nature. (via BBC News - Mouse memories ‘flipped’ from fearful to cheerful)

Mouse memories ‘flipped’ from fearful to cheerful
-
By artificially activating circuits in the brain, scientists have turned negative memories into positive ones. They gave mice bad memories of a place, then made them good - or vice versa - without ever returning to that place. Neurons storing the “place” memory were re-activated in a different emotional context, modifying the association. Although unlikely to be applied in humans with traumatic memories, the work sheds new light on the details of how emotional memories form and change. The research is is published in the journal Nature. (via BBC News - Mouse memories ‘flipped’ from fearful to cheerful)

During World War II, residents on the islands in the southern Pacific Ocean saw heavy activity by US planes, bringing in goods and supplies for the soldiers. In many cases, this was the islanders’ first exposure to 20th century goods and technology. After the war, when the cargo shipments stopped, some of the islanders built imitation air-strips. These incorporated wooden control towers, bamboo radio antennae, and fire torches instead of landing-lights. They apparently believed that that this would attract more US planes and their precious cargo. This behaviour, it turns out, is not a singular occurrence. Anthropologists have found examples of similar behaviour at different times in history, albeit in island populations. In a commencement speech at the California Institute of Technology in 1974, the physicist Richard Feynman used the concept to coin the phrase “cargo-cult science”. The cargo cult’s air-strips had the appearance of the real thing, but they were not functional. Likewise, Feynman used the term “cargo-cult science” to mean something that has the appearance of science, but is actually missing key elements. The phrase has since been used to refer to various pseudo-scientific fields such as phrenology, neuro-linguistic programming, and the various kinds of alternative therapies. Practitioners of these disciplines may use scientific terms, and may even perform research, but their thinking and conclusions are nonetheless fundamentally scientifically flawed.

How neuroscience is being used to spread quackery in business and education